План-конспект уроку алгебри у 9 класі з теми "Преобразование графиков функций "

Материал из ЗапоВики
Перейти к: навигация, поиск

Увага! Категорично заборонено використовувати цей матеріал на інших інтернет-порталах і в засобах масової інформації без письмового дозволу автора. Дозволяється, з метою навчання, використовувати елементи розробки з обов'язковим посиланням на дану сторінку.

Гріднева С 319.jpg

План-конспект

Содержание

Тема урока

Простейшие преобразования графиков функции.

Автор разработки

Гриднева Елена Яковлевна, учитель математики

Учебное заведение

Энергодарский многопрофильный лицей

Класс

9 класс

Название учебной программы

«Програми для загальноосвітніх навчальних закладів. Математика. 5-12 класи», видавництво «Перун», Київ, 2005 р.

Цели урока

  • Проверить умение учащихся читать графики функций, выполнять преобразование графиков функции.
  • Развивать мышление, память, речь, совершенствовать навыки самоконтроля, умение работать в паре.
  • Воспитывать толерантность, умение слушать и слышать одноклассников.

Тип урока

закрепление и применение знаний, умений, навыков

Формы работы:

фронтальная, коллективная, самостоятельная работа и работа в парах.

ХОД УРОКА:

I. Организационный момент.

Поставить перед учениками цели и задачи урока, ознакомить со структурой урока, Сегодня на уроке мы закрепим и применим знания по теме «Простейшие преобразования графиков функции», выполним практические задания, узнаем кое-что интересное о простейших преобразованиях графика функции.

II. Актуализация опорных знаний учащихся.

1. Теоретические вопросы

1) Дать определение функции.
2) Что такое аргумент?
3) Способы задания функции.
4) График функции.
5) Область определения функции.
6) Область значения функции.
7) Нули функции.
8) Четность, нечетность функции.
9) Знакопостоянство функции (как находятся промежутки знакопостоянства функции).
10) Точки пересечения графика функции с координатными осями.
11) Возрастание и убывание функции.
12) Назвать наиболее известные графики функции.

2. Алгоритм построения графика функции

Сейчас практически продемонстрируем построение графика функции с помощью геометрических преобразований известных графиков функции.
Чтобы построить такие и другие графики функции, нам надо:

1) Вспомнить правила построения.
2) Уметь правильно составлять алгоритм построения.
3) Поэтапно выполнять построение.

a) y= k*f(x), если известен график функции y= f(x).
b) y=f(k*x), если известен график функции y= f(x).
c) y= f(x)+b, если известен график функции y= f(x).
d) y= f(x+a), если известен график функции y= f(x).
e) y= - f(x), если известен график функции y= f(x).

III. Применение знаний, умений и навыков.

- Переходим к следующему этапу работы. Вы получили задание для самостоятельного выполнения.

1) Ваше первое задание:

Определить координаты вершины параболы.
1. у = х2 + 8
2. у = х2 - 8
3. у = (x + 8)2
4. y = (x - 8)2
5. y = (x - 4)2 + 3
6. y = (x + 4)2 + 3
7. y = (x - 4)2 - 3
8. y = (x + 4)2 - 3.

2) Ваше второе задание:

В какой координатной четверти находится вершина параболы.

1. у = (x + 10)2 - 16
2. у = (x - 11)2 + 15
3. у = (x + 15)2 + 4
4. у = (x - 11)2 - 9

- Обменяйтесь вашими работами для взаимопроверки. За правильный ответ ставим «+», неправильный « - ». Положите ваши работы в файл. Это ваша копилка знаний.

3) Ваше третье задание: по заданному изображению графика функции вы должны определить и записать формулу функции y = f(x).

4) Работа с учебником:

IV. Итог урока.

V. Домашнее задание.

VI. Рефлексия

Суди себя сам. Это самое трудное. Себя судить куда труднее, чем других. Если ты сумеешь правильно судить себя, значит, ты поистине мудр.

Антуан де Сент-Экзюпери
Выберите 1 фразу для себя:

Я молодец.
Я доволен своей работой на уроке.
Я мог бы поработать лучше.

  • Презентация к уроку [1]
  • Теоретические вопросы [2]
  • Самостоятельная работа[3]